
Finprint: A consumer-controlled, decentralized financial profile

Mike Yu Eugene Marinelli Nima Ghamsari

Kenneth Schiller Arjun Baokar

team@finprint.com

Abstract

Digitized consumer financial data—structured and verified by trusted third parties—will drive almost

all financial transactions in the future. The easy availability and fidelity of this data will eliminate the

need for redundant verification, resulting in dramatic efficiency gains and cost savings for banks, lenders,

and other financial institutions.

Today, a large and fragmented array of data providers package and sell this data to financial insti-

tutions, creating an unnecessarily complex system that is difficult for the consumer to understand and

control.

To simplify this ecosystem, we introduce Finprint, a decentralized protocol to securely and privately

manage consumer financial data on the blockchain. With this new protocol, consumers have a single hub

to control their entire financial profile, which they use to simply and securely share information with

financial institutions they trust. The consumer also benefits from full transparency into the data stored

on their profile and how it is used.

1 Background

The last decade has seen a surge in data-driven processes within consumer finance that will soon change how

consumers apply for financial products and how institutions make risk decisions. A large part of this shift

has been driven by Blend, a key Finprint partner and today’s leading consumer lending platform. Blend is

already leveraging data and technology to help many of the largest lenders expand access to financial services

and empower their customers.

In the Finprint team’s experience building and deploying Blend, we’ve seen consumers and financial

institutions alike take an increased interest in the aggregation of verified data for the origination of financial

products. Historically, lenders have required documentation in the form of paper or digital statements to

serve as verification of a consumer’s financial situation. At the surface level, this is onerous for consumers,

who must source statements individually from each institution. But the systemic effects are more profound:

lenders often have hundreds or thousands of staff members whose jobs are described as “stare and compare”,

meaning much of their day is spent manually reading the provided documentation and reconciling it with other

information provided by the consumer. Adding further cost, the lender will often undergo an expensive direct

verification with the underlying institutions towards the end of the loan process to ensure the documentation

wasn’t forged.

By using financial data aggregation capabilities provided by technologies such as Blend, lenders can

directly verify data with the underlying institutions in real time at the point of application. This is simpler

for consumers in that it doesn’t require them to bring together their financial statements. For the lender,

the data now automatically populates their underwriting models and processes without the need for manual

entry. Because verification happens up front, the lender can provide the consumer with an initial approval

1

mailto:team@finprint.com

instantaneously [1]. Lastly, because the data comes from a third party with no incentives in the active

transaction, and is not manually provided by the consumer or an intermediary, the data can be trusted to a

greater degree by both the lender and any downstream participants.

Aggregating consumer data into a centralized data store is a promising approach, but has several key

flaws. We’ve already seen security-related incidents related to centralized consumer data stores, in which

over a hundred million consumers have had their personal data compromised. Centralized data stores for

consumer information are high-value targets for malicious actors, and it is difficult for external parties to

validate their security.

Second, the gatekeepers for such a centralized data store are likely to impose large fees for access to

the high-value underlying data. This cost is passed on to the consumer, increasing costs and friction in the

ecosystem, and ultimately disincentivizing usage of verified financial data. We have already seen how these

high costs discourage lenders from using verified data early on in the origination process. Lenders typically

collect and manually validate documents up front, and will only pull the expensive verified data after they’re

confident that the customer needs the financial product. This creates unnecessary work throughout the

system.

A centralized system creates complexities around data management and security, which are top of mind

for the industry and its regulators. In early 2018, the Consumer Financial Protection Bureau published a set

of “Consumer Protection Principles” [2] to guide how the financial services industry manages consumer data.

These principles include consumer access, consumer consent (and accompanying ability to revoke consent),

security, and access transparency. A centralized model is fundamentally incompatible with these principles,

as it demands that consumers trust third parties. These parties are then relied upon to provide consumer

access, respect consumer consent, provide security, and access transparency. Whoever owns the database has

the ability to read the data, edit audit logs, and resell the data without consumer knowledge. Finprint, on

the other hand, leverages the blockchain to create transparency and control for the consumer, and naturally

promotes and enforces the CFPB’s principles.

Lastly, centralized data stores might not allow the consumer to freely reuse their own data across financial

products or institutions, depending on the incentives of the provider of the data store. This could mean that

consumers are required to re-pull and aggregate their data each time they wish to apply for a new financial

product. In contrast, Finprint allows consumers to seamlessly reuse their verified personal data with a single

tap when they have connected with any platform on the network. This reduces friction and costs for the

consumer and lender while allowing for greater velocity of data access and usage by the ecosystem.

The combined weaknesses in the centralized system around security, costs, regulation, and re-use of

data call for facilitation via a decentralized protocol. Finprint is that protocol, leveraging core constructs

in blockchain and cryptography to build a simpler financial data ecosystem for consumers and financial

institutions alike. Finprint uses a public, anonymized ledger to empower consumers to aggregate, share,

and audit access to their personal financial data, moving us toward a world where financial processes are

data-driven and completed in minutes, not weeks.

2 Objectives

Finprint aims to create a world in which each consumer has easy means to access their own verified financial

data and share it with financial institutions of their choosing. The protocol solves three key problems:

1. Simplicity for the consumer. Today, consumers access their financial data through a plethora of

systems, often relying on third parties to access source of truth information on their own assets, income,

November 22, 2019 2

http://files.consumerfinance.gov/f/documents/cfpb_consumer-protection-principles_data-aggregation.pdf

and credit. When a consumer wants to share this information with financial institutions such as lenders,

the situation becomes even more complicated, involving an even larger network of middlemen.

2. Trust and verification of data. Financial institutions cannot simply trust data provided to them

by a consumer. As a result, institutions incur significant costs procuring and validating documentation

as they attempt to verify consumer data when making a risk decision.

3. Consumer consent and access transparency. Consumer data is often shared between parties

without the consumer having full knowledge of how their data is being shared. It is difficult for

consumers to gain a clear understanding of who has viewed their data and when. In cases where this

data is available to consumers (e.g. credit reports by the credit bureaus), the access log is maintained

by and entrusted to a third party.

To further illustrate these three points, consider the example of getting a mortgage. Today, a consumer

must prove to a lender that they have adequate assets, income, and creditworthiness to get a loan. In the

extensive process of proving this, the consumer and lender will encounter our three problems as follows:

1. The consumer will have to work with separate systems to retrieve all of their own income, asset, and

credit data. This process can be very time-intensive, as the consumer has to manage many sets of

credentials for various systems. During this process, the lender may receive information about the

consumer that the consumer has not previously seen. A common example is when a lender pulls a

borrower’s credit report. A 2013 Federal Trade Commission report [3] found that 5% of consumers had

errors on at least one of their three major credit reports. These errors are particularly problematic

when a consumer is unable to access the data before providing it to the lender. This can result in

some consumers being unfairly denied loans. This also disadvantages lenders, who would prefer to have

originated that loan with the accurate information.

2. The consumer will need to provide hundreds of pages of documentation, such as bank statements and

tax transcripts, as evidence of the consumer’s stated assets and income. The lender needs to process

all of this documentation, typically by evaluating it manually. This adds cost, delay, and friction to

the process for both the consumer and the lender.

3. The lender will often share the data with its secondary market investors as it attempts to determine

fungibility on the loan. They also share subsets of the data with other data providers in order to verify

information about the borrower. While this data sharing may be disclosed to the borrower in legal

terms, it is not always clear to the borrower what is being shared, when, and for what purpose.

Our vision is that, in place of the lengthy process above, the consumer will be able to get a loan in a

single click by authorizing the lender to access the needed information in their Finprint profile. This profile

would have been previously constructed by various trusted providers via the Finprint network, and the lender

would have the ability to identify the original writer of each piece of data and decide which data to trust as

“verified.” All access by the lender, or by any parties the lender wants to share the data with, would have

to be explicitly granted by the consumer and would be published to the public audit ledger.

3 Data Sharing Protocol

3.1 Overview

Finprint enables consumers, data providers, and financial institutions to interact via a common protocol

and a shared, distributed ledger in order to share consumer financial data. This ledger manages access and

November 22, 2019 3

Figure 1: An overview of the major components of the Finprint protocol

payments so that the consumer has control of each party’s permissions, the audit trail is immutable and

public, and payment for data is built into the protocol to incentivize data providers to offer the highest

quality data.

Finprint keeps the consumer’s financial data private, while making it simple to share and fully auditable on

the public blockchain. At a high level, this is achieved by encrypting and storing private data in decentralized

storage, and secret sharing the decryption key across a group of “Finprint nodes” who hold an economic

stake in the network. In this way, access to the secret is split up such that every node must coordinate in

order to provide the data to another party, and individual nodes never gain information about the private

data. Good behavior is enforced with a challenge mechanism and an economic stake requirement.

We use this to develop the concept of a lockbox, an abstraction that enables a writer to provide verified

data for a consumer to share. It’s worth noting that other cryptographic protocols besides the scheme

described above could in theory be used to power lockboxes. These include secure multi-party computation

(SMPC), which is leveraged by decentralized privacy protocols such as Keep [4] and Enigma [5], and proxy

re-encryption schemes, such as those used by NuCypher [6]. We found the secret sharing approach to be the

most suitable given the needs of Finprint and current limitations in the state of the art of SMPC.

The Finprint protocol has four key components. Figure 1 illustrates the interfaces between them. The

components are:

1. Consumer. A consumer is a party named as the owner of a lockbox. Ownership means that the

consumer has the ability to give others permission to view the lockbox’s contents. Typically, the

consumer may be a person applying for a financial product.

November 22, 2019 4

2. Writer. A writer is the creator of a lockbox. The writer has the ability to update the data in a

lockbox, and receives payment each time the lockbox is read. Typically, the writer may be a financial

institution or data provider who is responsible for providing accurate consumer data.

3. Reader. A reader is a party who pays to read the data contained in a lockbox. This may be a lender,

investor, or institution that uses consumer data to make risk decisions or otherwise needs to observe

the data.

4. Lockbox. A lockbox is a smart contract object containing a unit of data written by a writer about a

consumer. The lockbox specifies a Finprint group that is responsible for maintaining the availability

and security of the lockbox data. Interactions with the lockbox occur via the Create, Update,

AddReader, RemoveReader OpenRequest, ChallengeResult, and LeaveLockbox functions

(described in §3.7). Among other things, these provide the mechanisms for a consumer to share the

data in the lockbox with readers.

Each entity E who is a party to the protocol has an address aE , an asymmetric key pair (pkE , skE), and

a token balance TE , denominated in a stablecoin such as DAI [7] or USDC [8]. These stablecoins can be

transferred between entities using a transfer function provided by the stablecoin; throughout the paper we

will refer to this function as transferTo.

To describe the protocol, we will start by walking through an example use case in §3.2. We then examine

each component in the protocol and their state and actions in sections 3.3–3.6. §3.7 describes in detail the

functions available on a lockbox. §3.8 describes the management of Finprint groups. Finally, §3.9 disucsses

incentive mechanisms including stablecoin transactions and the Finprint token, which is used to demonstrate

ownership in the network and is required for participation in Finprint groups.

3.2 Example Use Case

Suppose that Alice, a consumer, is applying for a loan from Emblem Bank, and wishes to provide the necessary

personal information via the Finprint protocol. An Emblem loan officer might tell Alice that Emblem Bank

needs 60 days of asset history, proof of income, and credit history in order to make a decision.

All Alice needs to do is use her Finprint key to explicitly grant Emblem Bank access to view the data

required.

Once Emblem Bank has been granted access, they send payment in stablecoin to data providers (say, A,

B, and C for asset, income, and credit data respectively). The payment matches the price that the relevant

providers have set for Alice’s data. Once the payment is sent, the network validates the payment and Alice’s

authorization, and decrypts and delivers the data to Emblem Bank. Emblem Bank can read this data, verify

via the blockchain that it was originally written by trusted providers, decision on it, and immediately grant

Alice her loan.

Note that at any time (before or after Emblem Bank checks the data and makes a credit decision), Alice

can take a look at the data and make sure it matches her expectations and is accurate.

Once Alice receives the loan, she may simply revoke Emblem Bank’s permissions to read the lockbox,

removing their ability to query it for more or updated data. If Alice wants to prove her creditworthiness to

her insurance agent while shopping for auto insurance the following week, she can simply permit them to

view the required data (in this case, perhaps just a credit history), and they can pay provider A and view

the trusted data as well.

November 22, 2019 5

3.3 Consumers

A consumer is a party who owns one or more lockboxes, where ownership refers to the ability to grant and

revoke access to the underlying data. Because Finprint is consumer-centric (i.e. it is meant to be a way for

consumers to collect verified data for the purpose of obtaining financial products), we group lockboxes by

consumer as a profile on the blockchain.

Any party can add a lockbox to any profile. Only the consumer who owns the profile can manage the

permissions of readers on the lockboxes associated with said profile. The consumer can also view the data

inside any lockbox associated with their profile.

3.4 Writers

A writer creates, but does not own, lockboxes and writes data into them. A writer may create thousands of

lockboxes over time.

3.5 Readers

A reader doesn’t need to maintain any state (other than a public key, which all parties have). A reader

simply interacts with lockboxes when given permission to do so, and has read-only access to the data.

3.6 Lockboxes

A lockbox controls access to a consumer’s financial data and consists of a smart contract object linked to

a Finprint group. To access the data protected by the lockbox, a reader must provide the contract with

payment. The contract will validate that the consumer has given permission for this reader to access the

data before requesting the Finprint group to provide their shares, encrypted with the reader’s session key.

For scalability, the consumer’s data may be stored off the blockchain in some decentralized, content-

addressable storage network. For example, the data could be encrypted and stored on a hash-keyed storage

network, such as IPFS [9] or Swarm [10]. This means that it can be read by any party with the hash and

decryption key, and maintains some of the nice properties of blockchain storage (availability, immutability,

censorship-resistance) at lower cost. By decentralizing the responsibility of storing data, we also reduce the

uptime requirements for the writers.

When creating a lockbox, the writer encrypts data D with a symmetric key kD and stores the ciphertext

on the storage network, keyed with hash HD. (HD, kD) is sufficient to retrieve the data. Then, (HD, kD)

is secret shared across the Finprint group such that the whole group is needed to retrieve the data for any

reader. The reader can use HD to verify that they receive the correct data from the storage network.

The data associated with the lockbox can be updated by a writer as frequently as a writer and consumer

agree to do so—for instance, bank account information might be updated daily, while credit information

might only be updated monthly.

The operation of lockboxes is maintained by two key components:

• Smart contract. A contract that maintains some publicly available state and validates that the

necessary conditions have been met in order for a lockbox to return data to a reader.

November 22, 2019 6

• Finprint group. A set of service providers, each of whom has a share of the secret data’s hash and

decryption key. Together, this group can share the contents of the lockbox with a reader under the

correct conditions.

3.6.1 Smart Contract

The lockbox smart contract maintains some public state and allows parties to execute a set of functions. The

state maintained by the smart contract can be represented as:

type Lockbox {
consumer: Address,

writer: Address,

permissionedReaders: Set[Address],

paidReaders: Set[Address],

finprintGroup: Array[Address], // Set of group members

secretShareHashes: Array[String], // Respective hashes for the shares of the group members

secretShares: String, // Decentralized storage address for encrypted shares of (H_D, k_D)

price: Number, // Price reader must pay to access data, denominated in stablecoin

transactionFee: Number, // Fee paid to each group member to access data, denominated in stablecoin -

↪→ the total fee (transactionFee * group size) is a fixed fraction of the price

lockboxDepositAmount: Number // Deposit amount each group member must store to participate,

↪→ denominated in stablecoin - this is a fixed multiple of the price

}

The functions it exposes are:

• Create creates a lockbox.

• Update allows the lockbox’s writer to modify the data contained in the lockbox.

• AcknowledgeShare allows Finprint nodes to confirm their appointment to a lockbox and commit

to their shares.

• AddReader and RemoveReader allow a consumer to manage the set of permissioned readers.

• OpenRequest allows a permissioned reader of a lockbox to get the data it contains by submitting a

session key with which the secret shares will be encrypted.

• PostResult is called by each group member to submit their share of the secret, encrypted with the

session key of the reader.

• ChallengeResult is called by a reader to challenge the share posted by a Finprint group member if

the share does not match the corresponding hash provided by the writer in secretShareHashes.

• LeaveLockbox is called by a Finprint node to remove itself from the Finprint group for a lockbox.

The functions are described in detail in §3.7.

November 22, 2019 7

3.6.2 Finprint Group and Secret Sharing

The Finprint group is at the core of Finprint’s data sharing protocol. The choices we made in the design of

this group—and of the associated secret sharing and challenge mechanisms—were directly driven by the use

cases we envision for Finprint.

Giving the data to either the consumer or the writer would create uptime requirements that shouldn’t be

imposed on either party. Using Finprint to share data should not require parties to synchronously respond to

requests to read the data because consumers and writers might be smaller parties who are not interested in

maintaining a 24/7 node on the network. A reader should be able to read a lockbox totally asynchronously

of the consumer’s consent or the writer’s posting of the data.

There are weaknesses in the incentives with giving the data to the consumer or writer as well. Giving the

verified data directly to the consumer would mean the writer has no guarantee of getting paid when the data

is read and used. As the writer is providing a useful service by being an unbiased source of truth, as well as

attesting to the data and providing it to the consumer, this would break down the ecosystem’s incentives.

There are also incentive-related flaws with having the writer provide the data from the lockbox. If the

writer has to serve the data, they may choose to withhold it from certain readers. For instance, a financial

institution might not want to share asset data with a competitor if that data will be used for the consumer

to move their bank account. Giving this role to the writer effectively moves too much control of the data

from the consumer to the writer, which is antithetical to the purpose of Finprint.

Our solution is to encrypt and store the consumer’s data in decentralized storage, and secret share the

decryption key with a group of staked third parties—the Finprint group. When an authorized reader requests

to read the data, each member of the group must encrypt its share of the secret for the reader’s session key

and publish it. The reader then decrypts and combines these shares to determine the full secret without

revealing information to any other participant. Structurally, this is similar to a proxy re-encryption scheme,

with the Finprint group acting as the proxy. Unless all the members of a sharing group conspire to combine

their shares, none of the members gain information about the lockbox contents.

3.7 Lockbox Functions

In this section we describe the basic functions outlined in the protocol overview above and describe how they

might be implemented.

3.7.1 Create

To post data about a consumer C, a writer W must first create a lockbox L. W first determines the Finprint

group {F1, . . . , Fn} via AssignGroup, outlined in §3.8. W then takes the desired data, encrypts it with

a symmetric key kD, and stores the encrypted data on a content-addressable decentralized storage network

at hash HD. W shards (HD, kD) into n shares using XOR secret sharing, encrypts each share si using Fi’s

public key, and publishes these encrypted shares as secretShares.

We don’t actually post secretShares directly to the contract because the contract never needs to interact

with it—only the group members do. Instead, we store it on the same storage network used for the lockbox

data, and post a hash or address that can be used to retrieve the data to the smart contract. Additionally,

W must post hashes of the individual shares as secretShareHashes. These hashes are used by the challenge

mechanism described in §3.7.7.

November 22, 2019 8

The lockbox is not active, meaning it cannot receive requests, until each Finprint group member has

acknowledged via the AcknowledgeShare function that its respective share matches the corresponding

hash in secretShareHashes.

Algorithm 1 Create

1: procedure Create(Lid, Lversion, C, finprintGroup, secretShares, secretShareHashes, price,

W=caller)

2: assert(∀Fi ∈ finprintGroup, Fi.stakedToken ≥ stakeThreshold)

3: LockboxV ersionRegistry[Lversion] := 〈
finprintGroup : finprintGroup,

secretShares : secretShares,

secretShareHashes : secretShareHashes,

price : price,

transactionFee : price ∗ transactionFeeFraction,

lockboxDepositAmount : price ∗ lockboxDepositMultiple,

〉
LockboxRegistry[Lid] := 〈

consumer : C,

writer : W,

currentVersion : null

pendingVersion : Lversion

〉
4: ProfileRegistry[C].lockboxes.add(Lid)

5: end procedure

Two parameters of the lockbox, transactionFee and lockboxDepositAmount, are calculated from the

lockbox price according to fixed ratios specified by the protocol implementation.

3.7.2 Update

Update allows W to update L’s content, price, or Finprint group. Updating the content or the Finprint

group entails regenerating HD and kD, and therefore secretShares and secretShareHahes as well.

Algorithm 2 Update

1: procedure Update(Lid, Lversion, finprintGroup, secretShares, secretShareHashes, price,

W=caller)

2: assert(W = L.writer)

3: assert(∀Fi ∈ finprintGroup, Fi.stakedToken ≥ stakeThreshold)

4: LockboxV ersionRegistry[Lversion] := 〈
finprintGroup : finprintGroup,

secretShares : secretShares,

secretShareHashes : secretShareHashes,

price : price,

transactionFee : price ∗ transactionFeeFraction,

lockboxDepositAmount : price ∗ lockboxDepositMultiple,

〉
5: L.pendingVersion = Lversion

6: end procedure

November 22, 2019 9

A lockbox’s contents are versioned. Each lockbox has a currentV ersion, which contains the content,

price, and Finprint group that readers interact with when opening a request for data. Update only changes

a lockbox’s pendingV ersion, which contains the updated information W wishes to write. A pendingV ersion

is promoted to become the currentV ersion after each Finprint group member named in pendingV ersion calls

AcknowledgeShare. Maintaining these two versions allows for data in L to be “hot swapped” without

incurring downtime for L while waiting for the Finprint group to acknowledge its shares.

3.7.3 AcknowledgeShare

When a Finprint node Fi has been selected for L’s Finprint group, it must follow two steps. First, the Finprint

node must deposit lockboxDepositAmount stablecoin into L. Then, it must acknowledge its participation in

the group by calling AcknowledgeShare.

Once a lockbox is active, each Finprint node Si in L.finprintGroup must respond to requests opened by

readers by publishing si, encrypted for the reader. The challenge mechanism described in 3.7.7 will enforce

that this published share matches the corresponding hash published in L.secretShareHashes. Therefore,

before a lockbox becomes active, each Si must confirm that the secret share si provided to it via L.secretShares

matches the corresponding hash hi in L.secretShareHashes.

A Finprint node should only call AcknowledgeShare once it verifies that hash(si) = hi. It should not

call this function otherwise.

Algorithm 3 AcknowledgeShare

1: procedure AcknowledgeShare(L, Lversion, Si=caller)

2: assert(Fi ∈ L.finprintGroup)

3: assert(Lversion = L.pendingVersion)

4: L.secretShareHashes[Fi].acknowledged = true

5: assert(L.deposits[Fi] ≥ L.lockboxDepositAmount)

6: if ∀hi ∈ L.secretShareHashes, hi.acknowledged = true then

7: L.currentVersion = L.pendingVersion

8: L.pendingVersion = null

9: end if

10: end procedure

Requiring Finprint nodes to call AcknowledgeShare before a lockbox accept requests helps to protect

the Finprint nodes from being penalized in case the writer posts invalid share hashes. If a Finprint node

does not call AcknowledgeShare in a timely manner, the writer may call Update to replace that node

with another eligible Finprint node or fix malformed shares or share hashes.

3.7.4 Add/Remove Reader

C can manage who can see the data in L by adding or removing permissioned readers.

November 22, 2019 10

Algorithm 4 AddReader / RemoveReader

1: procedure AddReader(L, R, C=caller)

2: assert(C = L.consumer)

3: L.permissionedReaders.add(R)

4: end procedure

1: procedure RemoveReader(L, R, C=caller)

2: assert(C = L.consumer)

3: L.permissionedReaders.remove(R)

4: end procedure

3.7.5 OpenRequest

Once C grants it permission, a reader R can request L’s content using OpenRequest. To do so, R generates

an asymmetric key pair (pksession, sksession) for the request and passes pksession into OpenRequest. This

is similar to usage of a session key in conventional encrypted communication. OpenRequest also requires

R to pay L.price into L.

Algorithm 5 OpenRequest

1: procedure OpenRequest(L, pksession, R=caller)

2: assert(R ∈ L.permissionedReaders)

3: assert(L.currentVersion 6= null)

4: assert(L.finprintGroup 6= ø)

5: if R 6∈ L.paidReaders ∪ {L.consumer, L.writer} then

6: transferTo(R,L,L.price)

7: L.paidReaders.add(R)

8: end if

9: transferTo(R,L,L.transactionFee ∗ |L.finprintGroup|)
10: end procedure

Note that C or W can act as a reader and call OpenRequest. In this case, C or W is not required to

pay the portion of the price that would go to W . They only have to pay the transactionFee for the Finprint

group members.

3.7.6 PostResult

Once R’s payment of L.transactionFee to L for a request r has been recorded on the blockchain, each group

member Fi re-encrypts their share of the secret with the session key pksession from the OpenRequest call

and posts the encrypted share to the smart contract as resi with PostResult.

November 22, 2019 11

Algorithm 6 PostResult

1: procedure PostResult(L, r, resi, version, Fi=caller)

2: assert(Fi ∈ L.finprintGroup)

3: assert(no previous PostResult involving L,Fi, and r))

4: L.results[r, Fi] = resi
5: transferTo(L,Fi, L.transactionFee)

6: if R /∈ {C,W} and Fi is the last member of finprintGroup to post then

7: transferTo(L,L.writer, L.price)

8: end if

9: end procedure

Once all of the resi have been posted, W is paid their share of L.price. R can decrypt each resi using

sksession and recombine the results to recover (HD, kD). R can then use HD to fetch the encrypted data

from decentralized storage, and decrypt it using kD to get D.

3.7.7 ChallengeResult

The protocol as presented so far assumes trust in all parties in the Finprint group to correctly and honestly

post their shares, and thus present valid data to the reader. Rather than rely on this trust, we create an

enforcement mechanism that allows R to claim that the result posted by a Finprint node Fi was malformed

or not delivered at all. If the reader successfully proves this was the case, they receive the lockbox deposit

Fi provided to L.

If R wants to claim a result was never posted, it can call ChallengeMissingResult, specifying the

request r and which Finprint node Fi failed to respond. If R wants to claim a result is malformed or

incorrect, it can call ChallengeInvalidResult, which requires it to additionally publish its secret session

key sksession. This allows the smart contract to verify publicly whether or not Fi’s posted share matches the

secret share hash posted by the writer.

Algorithm 7 ChallengeResult

procedure ChallengeMissingResult(r, Fi, R=caller)

2: assert(R opened r)

assert(Fi ∈ L.finprintGroup)

4: if L.results[r, Fi] = null ∧ currentT ime > r.openedAt + responseWindow then

transferTo(Fi, R, L.lockboxDepositAmount)

6: L.finprintGroup = ø

end if

8: end procedure

1: procedure ChallengeInvalidResult(r, Fi, sksession, R=caller)

2: assert(R opened r)

3: assert(Fi ∈ L.finprintGroup)

4: resi := L.results[r, Fi]

5: if isValidKeypair(r.pksession, sksession)∧L.secretShareHashes[Fi] 6= hash(decrypt(resi, sksession)) then

6: transferTo(L,R,L.lockboxDepositAmount)

7: L.finprintGroup = ø

8: end if

9: end procedure

November 22, 2019 12

In response to a missing result challenge, the smart contract will check if a publicly known responseWindow

has passed since the request was opened. If responseWindow has passed but Fi has not posted a result, Fi

forfeits its lockbox deposit to R.

In response an invalid result challenge, the smart contract will first validate that sksession is the secret

key that matches the previously posted pksession for that request. It then uses sksession to decrypt resi. If

resi does not match its corresponding hash in L.secretShareHashes, Fi forfeits its lockbox deposit to R.

In the event Fi forfeits its deposit, it no longer has the lockbox deposit required to participate in L,

and cannot continue being a member of that lockbox’s Finprint group. With a single missing member, the

group can no longer serve requests from readers, so L.finprintGroup is reset and the lockbox is rendered

inactive until the writer calls Update. This incentivizes writers to quickly replace unreliable Finprint group

members.

Note that each Finprint node is simply responsible for encrypting and publishing the share that was

originally provided to it. The Finprint nodes are not responsible for ensuring the quality of the data provided

by the writer. If a writer provides bad or poor quality data or shares, readers can leverage the reputation

protocol discussed in §4 to encourage others to avoid the lockbox, decreasing the writer’s profits.

3.7.8 LeaveLockbox

It is important that Finprint group members are able to exit the group associated with any lockbox at will

so that they are able to absolve themselves of availability requirements for that lockbox and recover their

deposits. By exiting all groups they participate in, members can also reclaim their (much larger) stakes from

the staking contract, as they no longer need to have “skin in the game” when they are no longer participating.

In order to do this, a Finprint group member si must broadcast intent to leave the group by calling

InitiateLeaveLockbox. A writer can call Update to replace this Finprint group member with another

that meets the requirements. In the event that a writer does not respond to this request for a protocol-

specified period of time, leaveRequestWindow, the Finprint node can call ForceLeaveLockbox to reset

the Finprint group for that lockbox and remove all members from it.

Algorithm 8 LeaveLockbox

procedure InitiateLeaveLockbox(L, Fi=caller)

2: assert(Fi ∈ L.finprintGroup)

L.leaveRequests[Fi].initiatedAt = currentT ime

4: end procedure

1: procedure ForceLeaveLockbox(L, Fi=caller)

2: assert(R = L.requests[requestId].R)

3: assert(Fi ∈ L.finprintGroup)

4: if L.leaveRequests[Fi].initiatedAt + leaveRequestWindow < currentT ime then ;

5: L.finprintGroup = ø

6: L.leaveRequests = ø

7: end if

8: end procedure

If a Finprint node successfully calls ForceLeaveLockbox and resets the Finprint group, the lockbox

becomes inactive and no longer allows readers to open requests. A writer can reactivate it by calling Update

with a new Finprint group.

November 22, 2019 13

3.8 Finprint Group Management

Finprint group membership must be carefully controlled because the members of lockbox groups are ulti-

mately responsible for maintaining the integrity and security of the network. Here, we define the on-ramps

and off-ramps for Finprint group participation.

3.8.1 Finprint Group Entry

In designing a mechanism for lockboxes to select Finprint group members, there are a few factors that need

to be considered:

• The security of the data is parameterized by the number of members of the group, transaction fee, and

lockbox deposit. These parameters should be selected by the writer, as they know the value of the data

and its sensitivity. Note that these parameters will likely vary by dataset—e.g. detailed asset history

is probably worth more than an attestion that Alice is an employee of a specific company.

• It should be difficult for an attacker to deliberately target and gain control of a specific lockbox. To

this end, the group selection should not be deterministic or predictable.

• Members of the group need to be incentivized to behave in line with the protocol, including to post

valid results when called upon, and to protect the secret in the lockbox.

• For scalability purposes, we want to do as little of the selection as possible on the blockchain.

To address these factors, there are some requirements that a party must meet to be a member of a

Finprint group:

• Finprint groups are opt-in—a party must want to be in a group in order to be selected. In particular,

they must opt in to participate at a given fee F and lockbox deposit LD, both a fixed percentage of

the data price P .

• Finprint group members must hold a large amount of Finprint token, staked in a staking contract from

which the token can only be retrieved if the party is not a member to any lockbox’s Finprint group.

This disincentivizes bad network behavior with the threat of a devaluation of the network currency if

the network is compromised.

In order to meet all of these conditions, we present the AssignGroup protocol. It proceeds in three

phases:

1. Search for candidates. The writer W broadcasts the parameters of the Finprint group: the price P ,

the number of group members n, and the minimum number of candidates m > n for the AssignGroup

protocol to succeed.

2. Declare candidacy. Each party who wants to be considered for the group posts a signed response to

the search. This response consists of a public hash function H computed over the hash of the current

block in the blockchain and the address of the poster (to generate some pseudo-randomness in the

selection process), as well as the address of a standard staking contract in which the candidate has

committed a reasonably large stake of Finprint token.

3. Select group. If there are not at least m parties who declared candidacy, the protocol exits with no

selection and the writer will need to try again, probably with a higher fee. Otherwise, the n lowest

hashes of eligible parties (those with large enough holdings) are selected to be the group.

November 22, 2019 14

3.8.2 Finprint Group Exit

Finprint nodes can exit their respective Finprint groups using the process described in 3.7.8. When selecting

the new group, the writer executes Declare candidacy and Select group to select the new members.

While leaving lockboxes is straightforward, Finprint group members cannot immediately recover their

lockbox deposit upon leaving L to ensure that they can still be held responsible for reader challenges to

their recently posted results. To recover its lockbox deposit, a Fi can have no requests opened against the

L.finprintGroup it was a part of within the protocol-fixed challengeWindow time period. Furthermore, to

ensure that it isn’t part of the new Finprint group for L, the node cannot have called AcknowledgeShare

on the pending version for L. Once these conditions are met, the Fi can withdraw its deposit for L.

To reclaim its staked Finprint token, Fi simply has to ensure that it isn’t part of any lockbox’s Finprint

group, current or pending, and that a protocol-specified amount of time has passed since it was part of one.

The smart contract provides these guards to protect readers for the promised time window while main-

taining Finprint group flexibility.

3.9 Incentives

While the above components make our goals possible, incentives are needed to make them actually happen.

When designing a decentralized protocol, especially one meant to handle consumer information and power the

financial system, it’s important to incentivize good behavior, such as the writing of truthful and high-quality

data and the protection of each secret contained in a lockbox.

In order to drive these incentives, we use two forms of cryptocurrency. One is used in the data sharing

protocol for the reader to pay the writer to retrieve data from the lockbox and to incentivize the secret

sharing and re-encryption operation by paying fees to the group. This will be a stablecoin not native to the

Finprint network.

We also introduce a native Finprint token, which must be held by group members in order for them

to participate. Finprint group members need to have significant holdings of Finprint token so they are

incentivized to maintain the integrity of the network, lest their holdings be significantly devalued.

All data, keys, and tokens (of either type) change hands in the Finprint protocol via transactions, which

are recorded on the blockchain. This also creates the immutable audit log, allowing consumers to identify

who has read what data and how often.

In this section, we analyze the incentive structures of the parties in the Finprint protocol.

3.9.1 Consumer Behavior

Consumers using Finprint are looking to get a financial product. Finprint is designed to bring simplicity

and transparency to the consumer, so their incentives are most aligned with the overall protocol. Consumers

only need to authorize readers to access their lockboxes, which they are naturally incentivized to do when

they have reason to do so (applying for a loan, etc), and are incentivized not to do otherwise to protect their

own privacy. Finprint is about empowering the consumer, and it seems clear that the consumer would be

inclined to behave as expected.

November 22, 2019 15

3.9.2 Writer Behavior

Writers using Finprint are effectively selling data they have on the consumer. This data may have value

for two reasons: (1) it comes from an unbiased and trustworthy third party, and (2) it is structured and

high-fidelity. Finprint incentivizes writers to provide data with these two characteristics.

Finprint’s per-read-request payment model incentivizes writers to provide data that is as valuable as

possible. Even today, buyers of financial data deeply value high-fidelity trustworthy data, demonstrated

by initiatives such as Fannie Mae’s Day 1 Certainty program [11] to attest to the trustworthiness of data

providers. Writers who are able to build strong reputations as high-quality data providers will see the usage

of their lockboxes skyrocket, and their profits will rise accordingly. A future, on-chain representation of a

writer’s reputation would also incentivize this further.

3.9.3 Reader Behavior

The only way for the reader to get “trusted” data that they are confident was provided by the writer is

to obtain it from the lockbox itself, which requires payment to the writer. We have seen that readers are

increasingly willing to pay for “trusted” data, especially in the wake of financial disasters spurred by poor

risk decisions such as the housing market collapse in 2007-2009. Consumer-stated data is no longer sufficient

for many loan products, and this trend is expected to continue as the regulatory environment develops.

Accordingly, we expect that this inability to validate the data as “trusted” without paying for it will be

sufficient incentive for the reader to pay.

3.9.4 Finprint Group Behavior

The incentives of the Finprint group are the hardest to pin down, as this group must be incentivized to:

• Quickly post results via PostResult when a reader has successfully executed OpenRequest.

• Post accurate results that can be used to derive the correct secret.

• Not post results via PostResult at any other time, or give the secret to unauthorized parties using

any other method.

To maintain these incentives, tokens are used in three ways:

1. Transaction fees are received for good behavior. These fees are received in stablecoin.

2. Members of the Finprint group must deposit tokens with a lockbox to be a part of it. This deposit can

be lost to the reader for not posting accurate results. These deposits are also transacted in stablecoin.

3. Members of the Finprint group must prove a large stake of Finprint token, disincentivizing behavior

that might devalue the network. This is the only use for the native Finprint token, which effectively

serves as a license to participate in secret sharing and collect fees.

In order to incentivize the posting of results, a Finprint group member is paid a transaction fee when it

makes a call to PostResult. This fee is a fixed fraction of the price specified by the writer when creating

the lockbox, which is also when the Finprint group is selected.

November 22, 2019 16

To incentivize the posting of accurate results, the ChallengeResult protocol allows readers to punish

Finprint group members for not doing so. We can settle disputes by having the network validate a group

member’s posted result by exposing the shares they each posted if the reader disputes the validity. If the

shares do not match those the writer provided the group member, the challenging reader may demonstrate

it and collect the member’s deposit.

In order to prevent the secret from being given up, there are a number of incentives and safeguards in

place. Because every component of the secret is necessary to compute it, we maintain confidentiality in the

presence of n − 1 dishonest nodes, meaning all participants in the group would have to deviate in order to

give up the secret. This protects the secret from all but the most comprehensive Sybil attacks. We further

disincentivize each individual member from giving the secret to unauthorized parties by requiring that all

group members prove a large stake of Finprint tokens. If the network appears insecure due to Finprint group

members giving up secrets, the value of that Finprint token stake will be adversely affected. This means

that a massive monetary gain would have to be realized in order for an group member to rationally give up

their share of the secret, making it impractical for a party to attempt to collect the secret from the group

members.

4 Reputation Protocol

When a financial institution makes a risk decision, it is important that the data being used is “trustworthy.”

Institutions have thresholds for what data they treat as trustworthy and what data they do not—trust is

relative. Different institutions have different risk tolerances and different partnerships with providers, and

accordingly have different levels of trust in each provider.

Finprint does not have an absolute measure of public trust, instead allowing each reader to identify the

writer of the data in question and independently decide how to treat that data. However, Finprint will

introduce support for public reputation, which is available, but not required, for readers to consider when

determining the value of lockboxes and deciding what data to pay for.

This protocol uses similar paradigms to those found in token-curated registries [12] and allows consumers

and readers to vote on the quality of data sources by staking Finprint tokens on the direction of the vote.

This reputation protocol needs more work to be formalized.

5 Conclusion

The Finprint protocol offers a way to securely store and share financial data while ensuring the consumer

maintains control over their data. By incentivizing the sources of truth to write data themselves, the protocol

provides frictionless access to high-fidelity data to expedite risk decisions that today are slowed down by

lengthy data verification steps.

Finprint also provides further guarantees which our experience leads us to believe would ease adoption

of the protocol. We don’t impose uptime requirements on consumers or financial institutions that wish to

read or write data, and we do this without sacrificing data availability, thanks to the design of the Finprint

group. This same mechanism protects readers from selective censorship by writers—if a consumer wants

their data shared with a particular reader, a writer cannot block that request. Finally, a reader receiving

invalid data can demand compensation via our challenge mechanism, and a reputation system incentivizes

writers to provide accurate data. Finprint provides first steps toward the creation of a secure data sharing

protocol that increases transparency, data fidelity, and simplicity for the consumer.

November 22, 2019 17

References

[1] Nima Ghamsari. The simplest mortgage approval ever.

https://blend.com/blog/news/future-lending-one-tap/, 2019.

[2] Consumer Financial Protection Bureau. Consumer Protection Principles: Consumer-Authorized

Financial Data Sharing and Aggregation. http://files.consumerfinance.gov/f/documents/cfpb_

consumer-protection-principles_data-aggregation.pdf.

[3] Federal Trade Commission. In FTC Study, Five Percent of Consumers Had Errors on Their Credit

Reports That Could Result in Less Favorable Terms for Loans.

https://www.ftc.gov/news-events/press-releases/2013/02/

ftc-study-five-percent-consumers-had-errors-their-credit-reports.

[4] Luongo and Pon. The Keep Network: A Privacy Layer for Public Blockchains.

https://keep.network/whitepaper.

[5] Zyskind, Nathan, and Pentland. Decentralizing Privacy: Using Blockchain to Protect Personal Data.

https://www.enigma.co/ZNP15.pdf.

[6] Egorov, Nuñez, and Wilkison. NuCypher: A proxy re-encryption network to empower privacy in

decentralized systems. https://github.com/nucypher/whitepaper/blob/master/whitepaper.pdf,

2018. Accessed: 2019-11-20.

[7] The Maker Team. The Dai Stablecoin System.

https://makerdao.com/whitepaper/Dai-Whitepaper-Dec17-en.pdf.

[8] The Centre Team. CENTRE. https://www.centre.io/pdfs/centre-whitepaper.pdf.

[9] IPFS - Content Addressed, Versioned, P2P File System (DRAFT 3).

https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf.

Accessed: 2019-11-20.

[10] Swarm Documentation. http://swarm-guide.readthedocs.io/en/latest/index.html. Accessed:

2018-03-05.

[11] Fannie Mae. Day 1 Certainty. https://www.fanniemae.com/singlefamily/day-1-certainty, 2018.

Accessed: 2019-11-20.

[12] Mike Goldin. Token-Curated Registries 1.0.

https://medium.com/@ilovebagels/token-curated-registries-1-0-61a232f8dac7, 2017.

Accessed: 2019-11-20.

November 22, 2019 18

https://blend.com/blog/news/future-lending-one-tap/
http://files.consumerfinance.gov/f/documents/cfpb_consumer-protection-principles_data-aggregation.pdf
http://files.consumerfinance.gov/f/documents/cfpb_consumer-protection-principles_data-aggregation.pdf
https://www.ftc.gov/news-events/press-releases/2013/02/ftc-study-five-percent-consumers-had-errors-their-credit-reports
https://www.ftc.gov/news-events/press-releases/2013/02/ftc-study-five-percent-consumers-had-errors-their-credit-reports
https://keep.network/whitepaper
https://www.enigma.co/ZNP15.pdf
https://github.com/nucypher/whitepaper/blob/master/whitepaper.pdf
https://makerdao.com/whitepaper/Dai-Whitepaper-Dec17-en.pdf
https://www.centre.io/pdfs/centre-whitepaper.pdf
https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf
http://swarm-guide.readthedocs.io/en/latest/index.html
https://www.fanniemae.com/singlefamily/day-1-certainty
https://medium.com/@ilovebagels/token-curated-registries-1-0-61a232f8dac7

	Background
	Objectives
	Data Sharing Protocol
	Overview
	Example Use Case
	Consumers
	Writers
	Readers
	Lockboxes
	Smart Contract
	Finprint Group and Secret Sharing

	Lockbox Functions
	Create
	Update
	AcknowledgeShare
	Add/Remove Reader
	OpenRequest
	PostResult
	ChallengeResult
	LeaveLockbox

	Finprint Group Management
	Finprint Group Entry
	Finprint Group Exit

	Incentives
	Consumer Behavior
	Writer Behavior
	Reader Behavior
	Finprint Group Behavior

	Reputation Protocol
	Conclusion

